翻訳と辞書
Words near each other
・ Mellification
・ Mellified man
・ Mellifleur
・ Mellifont Abbey
・ Mellij Galleh
・ Mellikeri
・ Mellikon
・ Mellikon railway station
・ Mellila, Morocco
・ Mellilla
・ Mellilla xanthometata
・ Mellilä
・ Mellin
・ Mellin (disambiguation)
・ Mellin de Saint-Gelais
Mellin inversion theorem
・ Mellin transform
・ Melling
・ Melling (surname)
・ Melling Branch
・ Melling Chase
・ Melling Hellcat
・ Melling Racing
・ Melling Railway Station
・ Melling V8
・ Melling Wildcat
・ Melling, Merseyside
・ Melling, New Zealand
・ Melling-with-Wrayton
・ Mellingen


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Mellin inversion theorem : ウィキペディア英語版
Mellin inversion theorem
In mathematics, the Mellin inversion formula (named after Hjalmar Mellin) tells us conditions under
which the inverse Mellin transform, or equivalently the inverse two-sided Laplace transform, are defined and recover the transformed function.
== Method ==

If \varphi(s) is analytic in the strip a < \Re(s) < b,
and if it tends to zero uniformly as \Im(s) \to \pm \infty for any real value ''c'' between ''a'' and ''b'', with its integral along such a line converging absolutely, then if
:f(x)= \ \varphi \} = \frac \int_^ x^ \varphi(s)\, ds
we have that
:\varphi(s)= \ = \int_0^ x^s f(x)\,\frac.
Conversely, suppose ''f''(''x'') is piecewise continuous on the positive real numbers, taking a value halfway between the limit values at any jump discontinuities, and suppose the integral
:\varphi(s)=\int_0^ x^s f(x)\,\frac
is absolutely convergent when a < \Re(s) < b. Then ''f'' is recoverable via the inverse Mellin transform from its Mellin transform \varphi.

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Mellin inversion theorem」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.